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Abstract 

Characterization of spectral lighting depending on occupants’ position and gaze is explored through a 

simulation-based framework and an experimental pilot study. Our knowledge on the spectral 

effectiveness of light by regulating our biological rhythms is advancing. Hence, defining the actual 

exposure to spectral lighting as a result of the building design from the occupants’ line of gaze is an 

important step forward. A simulation framework was developed to account for occupants’ gaze 

behavior and to compute circadian lighting for customised solutions at individual level. Computed 

spectral exposure’s relation to occupants’ performance were explored in a pilot study, where dwell and 

track data and attention levels of participants were gathered. Indications of higher attention levels 

when exposed to higher computed spectral lighting thresholds were found. 

Key Innovations 

• A pre-validated simulation workflow was developed. 

• The developed workflow coupled with occupancy sensors can give real-time information to 

the occupants regarding their light environment and achievable productivity levels towards 

building digitalization. 

• Such solutions will allow for customised lighting solutions at individual’s level. 

• We are set out to investigate the possibilities of relating spectral light exposure levels to human 

performance and productivity. 

Practical Implications 



 

 

The developed framework is used at this stage to illustrate exposure to spectral lighting as well as 

illumination levels at the eye level at any given position in space and thus allow for exposure 

characterization of the space at any given point. Acquiring such information could help making or 

suggesting better decisions and towards healthier indoors environment customised for each individual 

where higher performance rate could be expected. Moreover, in a more practical level, the developed 

workflow coupled with occupancy sensors can give real-time information to the occupants regarding 

their light environment and achievable productivity levels. The effect of such framework for the 

building occupant and owner are beyond the immediate needs of the society and towards continuous 

performing results. 

Introduction 

Located in eyes, Photosensitive Retinal Ganglion Cells (ipRGCs), serve as input in effectively 

synchronizing the human circadian rhythms to the daily 24h light and dark cycle when exposed to 

light. Timing, intensity, duration, wavelength, and prior history of exposure to light (Lockley, 2009) 

affect the resulting effects of this process. Despite different existing wavelength-dependent models 

to predict spectral-effectiveness of light (M. L. Amundadottir, Lockley, & Andersen, 2017; M. S. 

Rea, Bierman, Figueiro, & Bullough, 2008), these methods predict the circadian light exposure and 

its health potentials with assumption of static building occupants on fixed pre-defined points (Maria 

L Amundadottir, Rockcastle, Khanie, & Andersen, 2017). 

With great benefits on our well-being (Birchler-Pedross et al., 2009; Lockley, 2009), a spectral 

characterization of space based on dynamic occupant behaviour, is a step forward where a realistic 

input of at least four of the affecting factors, i.e., timing, intensity, duration and wavelength can be 

derived. Such approach allows for better understanding of occupant well-being based on actual 

occupant light-exposure and in support of customised health solutions at the individual level. 

In this study using Grasshopper3D (GH), a new framework was developed based on a previously 

developed gaze prediction GH tool (M. S. Sarey Khanie et al., 2018) to account for occupants’ gaze 

as well as gaze behaviour and Lark (Inanici & ZGF Architects LLP, 2015). The latter is a Radiance-



 

 

based (Ward-Larson & Shakespeare, 1998) multi-spectral and physically accurate spectral lighting 

simulation tool to account for photopic, Rea (M. Rea, 2015) and Lucas (Lucas et al., 2014) circadian 

illuminance computation methods. The developed simulation framework can hence identify light 

exposure related to actual human position and orientation (gd and gaze behaviour) in space to identify 

healthier solutions for each individual. The simulation framework, in addition, uses an existing gaze 

movement database and gaze behaviour model (Maria L Amundadottir et al., 2017) obtained and 

developed obtained at a daylight lab in Freiburg, Germany, in a user-assessment study where eye-

tracking systems were used to record visual responses to the luminous environment (M Sarey Khanie, 

Stoll, Einhäuser, Wienold, & Andersen, 2017). 

The developed framework, based on the aforementioned existing methods, takes as input dynamic 

gaze direction 

coordinates and delivers as output the computed light and spectral light levels using multi-spectral 

lighting simulations. As the final step, in order to explore the relation between computed exposure 

ranges to human performance and productivity in conceptual pilot study, dwell and track data as well 

as attention levels of participants were gathered. 

Background 

Dynamic gaze behaviour 

Addressing dynamic occupant gaze behaviour, could be done either by using predictive models in 

early design phases or by using occupancy sensor that could provide dwell and track data in post-

occupancy stages. Gaze reflexes are relatively well-understood eye movements (Krauzlis, 2008), that 

coexist with head and body movements (’t Hart & Einhäuser, 2012; Hayhoe & Ballard, 2005). 

Understanding the natural behaviour of gaze, which has a strong impact on the amount of light 

received in the field of view (FOV), in relation to the real- world conditions, e.g. illumination, requires 

accounting for all these coexisting movements in order to provide information about the actual gaze 

control during a real- life behaviour (’t Hart & Einhäuser, 2012; Fairchild, Johnson, Babcock, & Pelz, 

2001; Hayhoe & Ballard, 2005). 



 

 

Computational models that aim at predicting gaze orientation typically focus on the control of large 

eye movements by low-level stimulus features, such as luminance contrast, colour, orientation or 

motion (Itti, Koch, & Niebur, 1998; Navalpakkam & Itti, 2005). Experimentally, however, gaze is 

long since known to be influenced by task (Maria L Amundadottir et al., 2017; Buswell Thomas, 1935) 

or context (Rothkopf, Ballard, & Hayhoe, 2007; Torralba, Oliva, Castelhano, & Henderson, 2006). In 

relation to light as stimulus, the focus on gaze behaviour has largely been on urban street lighting 

(Heynderickx, Ciocoiu, & Zhu, 2013; Winter, Fotios, & Völker, 2019) or pedestrian lighting (Fotios, 

Gado, & Fotios Gado, 2005; Fotios, Uttley, Cheal, & Hara, 2014). In similar context, when viewing 

static images of natural scenes (streets lit with lamppost at night) observers tend to avoid bright and 

dark stimulus regions and to direct gaze to regions of medium luminance instead (Nuthmann & 

Einhäuser, 2015). The studies that have investigated the relationship between gaze shifts and building-

induced visual context such as the presence of window (Mandana Sarey Khanie, 2015; Sury, Hubalek, 

& Schierz, 2010; Yamín Garretón, Rodriguez, & Pattini, 2016) or light (Kokoschka & Haubner, 1985; 

Y. Lin et al., 2015; Vincent, Baddeley, Correani, Troscianko, & Leonards, 2009). These studies deny 

the fixed assumption of gaze direction (gd) (Hubalek & Schierz, 2004) and recommend balance 

luminance distribution in FOV to avoid transient adaptation when working on different tasks 

(Kokoschka and Haubner 1985). Dependencies on visual context such as task or view outside have 

also been shown in several studies (Hamedani et al., 2019). 

Dynamic gaze-behaviour as result of light exposure towards prediction models has been addressed in 

fewer studies. In these studies, photometric measurements and eye-tracking methods have been 

coupled for observations of gaze or eye responses to light (Doughty, 2014; Mandana Sarey Khanie, 

Stoll, Einhäuser, Wienold, & Andersen, 2016; Yamín Garretón et al., 2016). These studies, among 

others, have shown the perceived incidence angle of light which varies with the passage of the sun 

across the sky, also varies with dynamic gaze changes. 

The dynamic gaze direction behaviour has been modelled in a preliminary prediction model as 

function of light behaviour (Maria L Amundadottir et al., 2017). Figure 1, illustrates a light-driven 



 

 

gaze model where avoidance to a directional source 𝑔𝑔 , e.g., glare, and attraction to the directional 

source 𝑎𝑎  , e.g., view, is predicted by the model. This iterative model predicts the responsive behaviour, 

i.e., an angular shift, over the space for all possible directions. The visual scene inputs are identified 

using the high dynamic range (HDR) input data. 

 

 
 

Figure 1. Illustrates a light-driven gaze model where gaze behaviour is predicted using HDR 

renderings. 
 

 
 

 
 

(a) (b) 

Figure 2. (a) A camera with wide angle lens for occupancy video analysis, (b) an example of gd 

recognition. 

 

Another novel way of addressing gaze behaviour in building segments is cross-camera tracking methods, with applications 

ranging from surveillance (Wang & Zhang, 2010) or behaviour recognition (H. Lin et al., 2014) to building digitalisation. 

Fewer of these methods are using image-based occupancy sensors coupled with video analytics while having specific 

algorithms to ensure privacy Figure 2.a. Such methods are mainly used to provide real-time data on occupants such as 

occupancy rate and gender, but more importantly they provide the possibility of extracting spatio-temporal dwell and 

track data. Another possibility of data extraction explored briefly in this study using such sensors, is the occupant’s 

orientation in the space Figure 2.b. Here the occupant orientation is recognised in the image and the room- references 



 

 

coordinates are extracted. 

Multi-spectral Lighting simulation 

Radiance (Ward-Larson & Shakespeare, 1998) is a physically based light rendering open-source tool 

which works based on High Dynamic Range image-rendering in RGB colour space. The HDR rendered 

images are then converted to photometric values using a CIE-XYZ to RGB conversion formula. 

 (1) 

The possibility of changing the existing 3 channel approximation of the spectral signal to larger 

waveband bin was shown by (Ruppertsberg & Bloj, 2006, 2008) where the N-stepping (N consecutive 

wavebands) method for approximation waveband average of the original signal is used and 

implemented. Multi-spectral lighting simulation methods in field of architecture and building 

(Balakrishnan & J.Jakubiec, 2020) have adopted the aforementioned method for circadian lighting 

calculations. Two of the well-known and available tools are the open-source Lark (Inanici, Brennan, 

& Clark, 2015; Inanici & ZGF Architects LLP, 2015) and a more commercialised variation known as 

Appropriate lighting for alertness (ALFA) (Solemma, 2018) which are both user-friendly interfaces 

to adopt the N-stepping method for circadian lighting computation. In these tools the visible light 

spectrum is divided into larger number of channels and the computations are performed in different 

intervals that span the entire visible light spectrum for each visual scene to derive per-pixel photopic 

luminance (or illuminance) values and by circadian spectral sensitivity curve C (λ) to derive per-pixel 

circadian luminance (or illuminance) with necessary adjustments to equation (1). In this study we have 

only adopted Lark spectral lighting for spectral lighting simulations. 

Methods 

The methodologies regarding the simulation framework and the follow up pilot case study are 

explained in the following sections. The simulation framework is a Grasshopper3D tool that was 

designed to integrate dynamic gaze and spectral simulation in order to derive gaze dependent exposure 

characterisation of space. The obtained computed data is then processed to explore health potentials 



 

 

in buildings and further on relate to human productivity levels through a pilot case study. 

 

Characterization of spectral exposure 

Several embedded components of the Grasshopper3D plug-in and its related tools including Ladybug 

and Honeybee were used in development of the framework. Several components were scripted in 

Python ranging from gd and grid setup, andsetup and setting the Rhino view based on gd using a 

modification of “SetTheView” from Honeybee, to gaze shifts and counts which are implemented to 

be used in any form of architectural space by using correct intersections to the surrounding geometry. 

And finally, a set of components were scripted for Lark in order to read and process the data in relation 

to the specified gds.from gd. 

 

Figure 3. A schematic of implement dynamic gaze changes and non-visual effects in relation to 

daylight in Grasshopper 3D; the daylight simulations run through Radiance and DAYSIM using 

Honeybee and Ladybug components. Finally, a C# script is used together with TT toolbox for 

arranging obtained data. 

The developed framework, as shown in Figure 3, takes the 3D geometry and photometric information 

of the surfaces as input. Then material properties are added to the respective surfaces through 

Honeybee components. Dynamic gaze changes are computed through Python- written components 



 

 

from GazeTool (M. S. Sarey Khanie et al., 2018), which can predict a gaze avoidance from glare 

detected using the Radiance-based tool, Evalglare (Wienold, 2009). The basis of the analysis is a grid 

of viewpoints (vp), and a set of gds in 360° visual span. As default the number of gds is set to 8 in 

45° intervals. For final gaze counts when using GazeTool and in order to depict a dominant gaze zone 

or direction, the gaze shifts are binned into 8 zones of 360° visual span divisions as shown in Figure 

4. Otherwise, the spectral lighting is calculated for any given or input gd. In case the gaze position 

and direction are coming from the real-world conditions, i.e., occupancy sensor or eye tracking 

device, this data can be inputted directly to the workflow. HDR images are generated for each vp and 

gd in order to derive the relevant photometric values and enabling characterization of space-level 

exposure at any given position. Adopting a circadian rhythm metric which is a tool for characterizing 

light that acts as a stimulus for the human circadian rhythm system, e.g., or Equivalent Melanopic 

Lux (EML), the obtained images are processed into meaningful results. The threshold value CS 

explained the optimal stimulus throughout the working day, where specific values are given for each 

hour, while the threshold value EML gives a fixed value over all hours. In this paper EML is used 

and shown in the results as an example. In order to obtain a higher precision for circadian rhythm 

metrics, the 9-channel methodology is applied, which divides each of the three bins (RGB) into three 

channels. The division of the bins means that there will be three materials for both the sky and the 3D 

model surface materials, separated in red, green, and blue bins. The image-based and grid-based 

simulations are performed each with the three material bins, which eventually results in 2x3 

simulations for a single vp and gd specific situation. The output is given in Photopic, Rea, and Lucas 

lux by combining both HDR images and illuminance values for the viewpoint into a 

single value or image. Furthermore, to get the EML, the conversion (179/149)*Lucas is used. Figure 

5. shows an example of two viewpoints with nine gds over 360° visual span. This example illustrates 

whether along each gd shown as vectors, the threshold for EML – in this case the threshold is 200 lux 

based on WELL protocol – with green being above and red being below the threshold. 

 

 



 

 

 
 

(a) (b) 

Figure 4. The binning of the shifted gds in visual span zones are shown in an example using the MIT 

reference office (Reinhart, Jakubiec, & Ibarra, 2013). Creation of eight gaze zones (numbered 0 to 

7) centered around: (a) two vps ((U,V)=(1,2)), (b) three vps ((U,V)=(1,3)). 

 

 
 

(a) (b) 

Figure 5. MIT reference office (Reinhart et al., 2013),an example of two vp and eight gd is shown. 

The green arrows for the computed period meet the EML threshold in this case: (a) two vps 

((U,V)=(1,2)), (b) three vps ((U,V)=(1,3)). 



 

 

 

 

Figure 6. The measurement devices used in the study as used in one of the zones. 
  



 

 

The pilot case study 

The pilot study was done at the SMART Library at Technical University of Denmark (DTU) between 

31st of October until 13th of November with the aim of collecting occupants’ gaze, satisfaction, and 

performance data. The study was performed in two selected areas, in first and third floor of the library, 

respectively facing west and north/east. Several physical indoor environmental measurements were 

made including temperature and humidity using Hobo, and CO2, using calibrated Vaisalas as well as 

illuminance light levels using two different types of luxmeters. Outdoor light levels were extracted 

from the global horizontal irradiance measured at the campus weather station (Andersen et al., 2017). 

A questionnaire was developed and used, collecting demographic data, mood, task purpose, 

satisfaction, and performance (Bille, 2019). To examine performance, we adopted D2 test, which is 

a neuropsychological measure of selective and sustained attention. Occupants’ gaze orientations were 

tracked using an image-based sensor as well as through self-reported logging in the questionnaire. 

Simulation and case study setup 

A detailed 3D model was made to ensure that the same scene that the test participants’ face is reflected 

in the digital format. Through the programs WINDOW and Optics6, a spectral distribution was 

calculated for a window pane type similar to that seen at DTU library. A 2- layer window pane with 4 

mm clear glass, 12 mm air layer, and 6 mm energy glass has been used. Pilkington windowpanes were 

chosen, with 4 mm Optifloat™ Clear and their 6mm Suncool™ Brilliant 50/25 which has a 

transmission of 0.5 and a direct transmission of 0.24. Furthermore, window parameters are shown in 

Table 1. Table 2 shows the materials used in the simulation study. Finally, Table 3 shows the 

rendering parameters used in the simulations. Movable furniture and partitioning was not included, 

as there is great uncertainty about their position at each instant of time. Using the mentioned tools, 

the workflow goes through 6 main steps. 



 

 

Table 1: Window properties. 
 

Window parameters Value 

Thickness 22 mm 

Solar factor 0.49 

Daylight transmittance 50% 

Direct transmittance 25% 

Reflectance 39% 

Absorbance 37% 

Table 2: Surface materials reflectance. 
 

Materials Description 

Generic Interior Wall Diffuse reflectance of 50% 

Generic Ceiling Diffuse reflectance of 70% 

Generic Floor Diffuse reflectance of 20% 

Generic Exterior Wall Diffuse reflectance of 35% 

Exterior Ground Diffuse reflectance of 10% 

Table 3: Radiance rendering parameters. 
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In the 1st step, the location of each occupant vp, in the space is set. At these defined vps, eight initial 

gds are assumed over 360° visual span. Next, the global horizontal illuminance is calculated for a 

specified sky. In step 3, the spectral sky is calculated through 9-channels based on the horizontal 

illuminance and the spectral power distribution. In this simulation, a D65 spectral power distribution 

has been used, which describes the average noon light for Northern/Western Europe. In step 4, the 

spectral distribution of the glass is calculated, which is calculated through Optics6. In step 5, the 9-

channel simulation is started, after which the simulated results can be collected in step 6. Step 6 

combines the simulated results from the 3 respective grid-based and image-based simulations. The 

results consist of a series of 9-channel simulations from which the EML is derived for each gd. 

  



 

 

Results 

The pilot case study 

30 data points were obtained after cleaning the data based on fully responded questionnaires. The data 

was gathered in indoor environmental conditions with the minimum effect of the temperature, CO2 

levels and humidity as these parameters were kept in close to constant limits (Bille, 2019). Among the 

participants, there were 69% male and 31% female with 51% under 24 years old. The participants had 

Danish nationals 60% or an international background of 40%. The occupancy rate and accumulated 

gds in each zone are shown in Error! Reference source not found.. 

 

(a) (b) 

Figure 7. Participants accumulated gaze in the two selected areas where 180 is directed towards the 

North. 

                   

 

(a) (b) 

Figure 8. The occupancy rate of the participants in the selected respective zones, with North at the 

top. 

 

#N 



 

 

 

Figure 9. The achieved EML threshold at each vp and gd in the two zones are shown in green, 

otherwise in red. 

Exposure at participants’ position 

The time of the day, occupant gd, and date are all predetermined based on the pilot study. The health 

potential was computed for each participant dominant gaze orientations. These calculations were done 

without electric lighting. The thresholds are at 500 lux for photopic results and 200 for EML. Figure 9. 

illustrates EML at each vp and gd with the green arrows meeting the criteria. We can see that required 

daylight exposure is not met on most of positions and gds depending on time of the day in this period 

of the year. Only a few situations achieved the threshold values. On the north façade, minimal visual 

discomfort was found, allowing orientations towards the window, which resulted in a higher health 

potential. Figure 10 and Error! Reference source not found. Figure 11. illustrates percentage of 



 

 

photopic and EML results meeting the respective thresholds for each individual at zone 5 and 30 where 

the results were not zero due to lack of daylight. The graphs are sorted from minimum to maximum 

exposure which also corresponds to the minimum and maximum access to view depending on the 

participants’ dominant orientation in the space shown on top of each individual graph. In both zones, 

the only sunny day is shown. The rest of tests were done under overcast sky. At the time of study and 

under overcast conditions, the recommended thresholds cannot be met in most points. The gaze 

orientation towards window and view ensures a higher exposure at the eye level in both zones. 

 

Exposure and Performance 

While we could see some effects of gender or concentration on the D2 responses, these observations 

was not significant or could be explained due to confounding variables. The attention rates were 

averaged 50% in cases where exposure thresholds were not met and improved to above 56% only in 

higher levels of exposure in zone 5. In zone 30 we could see the same trend with an increase from 

average 48% concentration to 50%. While a small agreement with a coefficient of determination of 

14% could be seen in zone 5 between the exposure levels and attention rates, this agreement drops 

dramatically in zone 30 due to presence of glare in some cases. 

Discussion 

The developed simulation workflow, creates an easy platform to connect occupants gaze orientation 

to their light exposure. The information provided using this framework can be valuable to each 

individual in terms of how they place themselves in the building. The developed framework works 

with any input data on gaze orientation. The pilot study allowed for further assessment and 

development of the project concept. However, due to small sample size and limited experimentation 

period, the relation between spectral exposure and productivity cannot be conclusive. Time 

dependencies of the obtained health potentials can be addressed when occupancy sensors are 

available. Using dwell data, this information can be derived to enhance the results beyond the 

threshold-based representations.



 

 

 

Figure 10. Percentage of photopic and EML relative to thresholds at zone 5. 



 

 

 

Figure 11. Percentage of photopic and EML relative to thresholds at zone 30. 

Conclusion 

The presented simulation framework provides a demonstration of gaze and light exposure patterns at 

different points in space based on a dynamic occupant gaze behaviour. A threshold-based health 

potential of the participants in a pilot study is processed using the developed method and related to 



 

 

their attentions levels. It can be seen that only fewer positions would reach the thresholds under 

overcasts skies and only when higher levels of light available. In absence of visual discomfort, higher 

health potentials can be achieved when participants are oriented towards the window. It can therefore 

be concluded that the orientation in space is crucial for exposure at the eye level, but it is still 

important that the visual comfort is maintained. Considering the high variation of results at different 

points in time and position for each individual in an open spaces such as library or similar, indoor 

climatic regions are crucial for optimized compliance with health potentials. Using the developed 

method which allow for acquiring gaze-dependent information, identifying such regions in the space, 

or advising the occupants at individual level will be possible. Several aspect of the study can be 

enhanced or further investigation is needed. Addressing time-dependency of health and performance 

potentials in space is a crucial aspect of the study. Retrieving a “time dependent” health potential 

instead of merely a threshold-based using dwell and track data is an advantage in the developed 

method. Such data is retrievable in case of a real-time occupancy monitoring. In a situations where 

only a simulation-based approach is used, the time-dependency of the health potentials at each point 

cannot be addressed directly in the current version of the simulation framework. The pilot study  

allowed  for  further  relations  to  occupant 

.productivity and performance. However, more studies in controlled conditions are needed to achieve 

this goal. 

Several algorithms are used which can be updated as the research in each area advances. Finally, full-

annual studies are not supported in the current version. The simulation workflow and a tutorial can 

be seen using the links below. 

https://zenodo.org/deposit/4436380 https://youtu.be/JhkCtallEZA 

https://zenodo.org/deposit/4436380
https://youtu.be/JhkCtallEZA


 

 

Acknowledgement 

The project was funded by InnoBYG, Ministry of Higher Education and Science. The authors would 

like to thank VELUX A/S, Henning Larsen Architects and MOE A/S for their support. We would like 

to mention Ann S. Bille, Klara F. Lauridsen, Mathilde A. Jensen, Stephanie B. Hansen, and all our 

participants for their support.. 

References 

’t Hart, M., & Einhäuser, W. (2012). Mind the step: complementary effects of an implicit task on eye 

and head movements in real-life gaze allocation. Experimental Brain Research, 223(2), 233–249. 

Amundadottir, M. L., Lockley, S. W., & Andersen, M. (2017). Unified framework to evaluate non-

visual spectral effectiveness of light for human health. Lighting Research and Technology, 

49(6), 673–696. https://doi.org/10.1177/1477153516655844  

Amundadottir, Maria L, Rockcastle, S., Khanie, M. S., & Andersen, M. (2017). A human-centric 

approach to assess daylight in buildings for non-visual health potential, visual interest and 

gaze behavior. Building and Environment, 113, 5–21. ¨ 

http://dx.doi.org/10.1016/j.buildenv.2016.09.033 

Andersen, E., Johansen, J. B., Furbo, S., Perers, B., Andersen, L. K., Dragsted, J., & Dannemand, M. 

(2017). Availability of high quality weather data measurements. DTU Civil Engineering 

ReportsNo. R-379. 

Balakrishnan, P., & J.Jakubiec, A. (2020). Spectral Rendering with Daylight: A Comparison of Two 

Spectral Daylight Simulation Platforms. Proceedings of Building Simulation 2019: 16th 

Conference of IBPSA, 16, 1191–1198. https://doi.org/10.26868/25222708.2019.211158 

Bille, A. S. W. (2019). Lighting Environment for better Performance, Bachelor Thesis, Departmenr 

of Civil Enginereing, Technical University of Denmark 

https://findit.dtu.dk/en/catalog/2484247969 

Birchler-Pedross, A., Schröder, C. M., Münch, M., Knoblauch, V., Blatter, K., Schnitzler-Sack, C., 

Cajochen, C. (2009). Subjective Well-Being Is Modulated by Circadian Phase, Sleep Pressure, 

https://doi.org/10.1177/1477153516655844
http://dx.doi.org/10.1016/j.buildenv.2016.09.033


 

 

Age, and Gender. Journal of Biological Rhythms, 24(3), 232–242. 

https://doi.org/10.1177/0748730409335546 Buswell Thomas, G. (1935). How people look 

at pictures:A study of the psychology of perception in art. Univ. Chicago Press 

Doughty, M. J. (2014). Spontaneous eyeblink activity under different conditions of gaze (eye position) 

and visual glare. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252(7), 1147–

1153. https://doi.org/10.1007/s00417-014-2673-8 

Fotios, S., Gado, T., & Fotios Gado, T. (2005). A comparison of visual objectives used in side-by- 

side matching tests. Lighting Res. Technol., 37(2), 117–131. 

Fotios, S., Uttley, J., Cheal, C., & Hara, N. (2014). Using eye-tracking to identify pedestrians’ critical 

visual tasks. Part 1. Dual task approach. Lighting Research and Technology,

 1477153514522472. 

https://doi.org/10.1177/1477153514522472 Hamedani, Z., Solgi, E., Skates, H., Hine, T., 

Fernando, R., Lyons, J., & Dupre, K. (2019). Visual discomfort and glare assessment 

in office environments: A  review of light-induced physiological and 

perceptual responses. Building and Environment, 153, 267–280. 

https://doi.org/10.1016/j.buildenv.2019.02.035 

Hayhoe, M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in Cognitive Sciences, 

9(4), 188–194.https://doi.org/10.1016/j.tics.2005.02.009 Heynderickx, I., Ciocoiu, J., & Zhu, X. 

(2013). Estimating 

eye adaptation for typical luminance values in the field of view while driving in urban streets. 

Light & Engineering, 21(4). 

Hubalek, S., & Schierz, C. (2004). LichtBlick– photometrical situation and eye movements at VDU 

work places. CIE Symposium, 4, 322–324. 

Inanici, M., Brennan, M., & Clark, E. (2015). Spectral daylighting simulations: Computing circadian 

light. 14th International Conference of IBPSA - Building Simulation  2015,  BS  2015,  

Conference 



 

 

Proceedings, 1245–1252. 

Inanici, M., & ZGF Architects LLP. (2015). Lark Spectral Lighting. Retrieved January 31, 2021, 

from Webpage website: https://faculty.washington.edu/inanici/Lark/Lark_h ome_page.html 

Itti, L., Koch, C., & Niebur, E. (1998). A Model of saliency-based visual attention for rapid scene 

analysis. 20(11), 1254–1259. 

Kokoschka, S., & Haubner, P. (1985). Luminance ratios at visual display workstations and visual 

performance. Lighting Research and Technology, 17(3), 138–144. 

https://doi.org/10.1177/14771535850170030101 Krauzlis, R. J. (2008). Eye movements. 

Fundamental Neuroscience, 775–792. 

Lin, H., Chaisorn, L., Wong, Y., Liu, A. A., Su, Y. T., & Kankanhalli, M. S. (2014). View-invariant 

feature discovering for multi-camera human action recognition. 2014 IEEE International 

Workshop on Multimedia  Signal  Processing,  MMSP  2014. 

https://doi.org/10.1109/MMSP.2014.6958807 

Lin, Y., Fotios, S., Wei, M., Liu, Y., Guo, W., & Sun, Y. (2015). Eye movement and pupil size 

constriction under discomfort glare. Investigative Ophthalmology & Visual Science, 56(3), 

1649–1656. 

Lockley, S. W. (2009). Circadian Rhythms: Influence of Light in Humans. Encyclopedia of 

Neuroscience, 2, 971–988. 

https://doi.org/10.1016/B978-008045046-9.01619- 3 

Lucas, R. J., Peirson, S. N., Berson, D. M., Brown, T. M., Cooper, H. M., Czeisler, C. A., … Brainard, 

G. C. (2014).  Measuring  and  using  light  in  the melanopsin age. Trends in Neurosciences, 

Vol. 37. https://doi.org/10.1016/j.tins.2013.10.004 

Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 

45(2), 205–231. https://doi.org/10.1016/j.visres.2004.07.042 Nuthmann, A., & Einhäuser, W. 

(2015). A new approach to modeling the influence of image features on fixation selection in 

scenes. Annals of the New York Academy of Sciences, 1339(1), 82–96. 



 

 

https://doi.org/10.1111/nyas.12705 

Rea, M. (2015). The lumen seen in a new light: Making distinctions between light, lighting and 

neuroscience. Lighting Research & Technology, 47(3), 259–280. 

https://doi.org/10.1177/1477153514527599 

Rea, M. S., Bierman, A., Figueiro, M. G., & Bullough, J. 

D. (2008). A new approach to understanding the impact of circadian disruption on human 

health. J Circadian Rhythms, 6, 7. https://doi.org/10.1186/1740-3391-6-7 

Reinhart, C. F., Jakubiec, J. A., & Ibarra, D. (2013). Definition of a reference office for standardized 

evaluations of dynamic façade and lighting technologies. Proceedings of BS 2013: 13th 

Conference of the International Building Performance Simulation Association, 3645–3652. 

Rothkopf, C. A., Ballard, D. H., & Hayhoe, M. M. (2007). Task and context determine where you 

look. Journal of Vision, 7(14), 16. https://doi.org/10.1167/7.14.16 

Ruppertsberg, A. I., & Bloj, M. (2006). Rendering complex scenes for psychophysics 

using  RADIANCE: How accurate can you get? JOSA A, 23(4), 759–768. 

http://www.opticsinfobase.org/abstract.cfm?id=89 036 

Ruppertsberg, A. I., & Bloj, M. (2008). Creating physically accurate visual stimuli for free: Spectral 

rendering with RADIANCE. Behavior Research Methods, 40(1), 304–308. 

https://doi.org/10.3758/brm.40.1.304 

Sarey Khanie, M. S., Kjærgaard, S. V., Johnsen, M. H. K., Negendahl, K., Wienold, J., & Andersen, 

M. (2018). A Gaze Visualizer tool implementation of gaze data into lighting rendering tools using 

radiance and honeybee for Grasshopper3d. Building Performance Analysis Conference and 

SimBuild. Chicago, United States. 

Sarey Khanie, M, Stoll, J., Einhäuser, W., Wienold, J., & Andersen, M. (2017). Gaze and discomfort 

glare, Part 1: Development of a gaze-driven photometry. Lighting Research and Technology, 

49(7), 845–865. https://doi.org/10.1177/1477153516649016 Sarey Khanie, Mandana. (2015). 

Human responsive daylighting in offices. EPFL. 

http://www.opticsinfobase.org/abstract.cfm?id=89


 

 

Sarey Khanie, Mandana, Stoll, J., Einhäuser, W., Wienold, J., & Andersen, M. (2016). Gaze 

and discomfort glare, Part 1: Development of a gaze- driven photometry. Lighting

 Research & Technology. https://doi.org/10.1177/1477153516649016 

Solemma. (2018). Solemma LLC | ALFA. Retrieved April 29, 2020, from Alfa – adaptive lighting 

for alert- ness website: https://solemma.com/Alfa.html 

Sury, P. M., Hubalek, S., & Schierz, C. (2010). A first step on eye movements in office settings: Eine 

explorative Studie zu Augenbewegungen im Büroalltag (Vol. 51). GRIN Verlag. 

Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, 

J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: the role 

of global features in object search. Psychological Review, 113(4), 766. Retrieved from 

http://psycnet.apa.org/journals/rev/113/4/766/ 

Vincent, B. T., Baddeley, R., Correani, A., Troscianko, T., & Leonards, U. (2009). Do we look at 

lights? Using mixture modelling to distinguish between low-and high-level factors in natural 

image viewing. Visual Cognition, 17(6–7), 856–879. 

Wang, T., & Zhang, R. (2010). Study of moving object detecting and tracking algorithm for video 

surveillance system. 5th International Symposium on Advanced Optical Manufacturing and 

Testing Technologies: Smart Structures and Materials in Manufacturing and Testing, 7659, 

76590N. https://doi.org/10.1117/12.865457 

Ward-Larson, G., & Shakespeare, R. (1998). Rendering with radiance: the art and science of 

lighting visualization. Morgan Kaufmann Publishers. 

http://portal.acm.org/citation.cfm?id=286090 

Wienold, J. (2009). Dynamic daylight glare evaluation. Eleventh International IBPSAConference: 

Building Simulation, 944–951. https://doi.org/citeulike-article-id:11069372  

Winter, J., Fotios, S., & Völker, S. (2019). The effect of assuming static or dynamic gaze behaviour 

on the estimated background luminance of drivers. Lighting Research & Technology, 51(3), 

384–401. https://doi.org/10.1177/1477153518757594 

http://psycnet.apa.org/journals/rev/113/4/766/
http://portal.acm.org/citation.cfm?id=286090
https://doi.org/citeulike-article-id:11069372


 

 

Yamín Garretón, J. A., Rodriguez, R. G., & Pattini, A. E. (2016). Glare indicators: An analysis of 

ocular behaviour in an office equipped with venetian blinds. Indoor and Built Environment, 

25(1), 69–80. https://doi.org/10.1177/1420326X14538082 


