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a b s t r a c t

A method of defining occupants’ window opening behaviour patterns in simulation programs, based on
measurements is proposed.

Occupants’ window opening behaviour has a strong effect on indoor environment and the energy
consumed to sustain it. Only few models of window opening behaviour exist and these are solely based
on the thermal indoor/outdoor environment. Consequently, users of simulation software are often left
with little or no guidance for the modelling of occupants’ window opening behaviour, resulting in
potentially large discrepancies between real and simulated energy consumption and indoor
environment.

Measurements of occupant’s window opening behaviour were conducted in 15 dwellings in Denmark
during eight months. Indoor and outdoor environmental conditions were monitored in an effort to relate
the behaviour of the occupants to the environmental conditions. The dwellings were categorized in four
groups according to ventilation type (natural/mechanical) and ownership (owner-occupied/rented) in
order to investigate common patterns of behaviour. Logistic regression was used to infer the probability
of opening and closing a window.

The occupants’ window opening behaviour was governed by different but distinct habits in each
dwelling. However, common patterns were also identified in the analysis: Indoor CO2 concentration
(used as indicator of indoor air quality) and outdoor temperature were the two single most important
variables in determining the window opening and closing probability, respectively.

The models could be implemented into most simulation programs, which would enable a better
chance of mimicking the behaviour of the occupants in the building and thus simulating the indoor
environment and energy consumption correctly.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Occupants who have the possibility to control their indoor
environment have been found to be more satisfied and suffer
from fewer building related symptoms than occupants who
occupy environments in which they have no control [1e4]. These
studies emphasize the significance of providing occupants with
rich opportunities of interacting with building controls. In doing
so, the control of the building is to some extent left in the hands
of the occupants. However, occupant behaviour varies signifi-
cantly between individuals which results in large variation of
the indoor environment and energy consumption of buildings
[5e9]. Because of this, it is important to take occupants’

interactions with building controls into account when designing
buildings.

Most building simulation programs provide possibilities of
regulating the simulated environment by adjusting building con-
trols (opening windows, adjusting temperature set-points etc.).
However, discrepancies between simulated and actual behaviour
can lead to very large offset between simulation results and actual
energy use [10,11]. Indeed, Andersen et al. showed that differences
in occupant behaviour might lead to differences in energy con-
sumption of over 300% [12]. Thus, there is a need to set up stan-
dards or guidelines to enable comparison of simulation results
between simulation cases. One method that can provide this is to
define typical behaviour patterns that can be implemented in
building simulation programs. This would significantly improve the
validity of the outcome of the simulations. A definition of such
typical behaviours should be based on the quantification of real
occupant behaviour.
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Two important parameters influencing energy consumption in
dwellings are indoor temperature and air change rate.Wallace et al.
measured air change rates in a house during one year and found
that the opening and closing of windows had the largest effect on
the air change rate [13]. Also Howard-Reed et al. found that opening
of windows produced the greatest increase in air change rates
compared with temperature differences and wind effects [14].
Kvistgaard and Collet [15] measured air change rates in 16 Danish
dwellings and noted that there was considerable difference in the
total air change between individual dwellings. As the basic air
change1 was similar, it was concluded that the behaviour of the
occupants caused these large differences. Also Bekö et al. [16]
concluded that the occupants’ behaviour had the largest effect on
air change rates, in their measurements of air change rates in 500
bedrooms. In Danish dwellings, mechanical cooling is almost never
used, which means that the indoor temperature depends on the
heating set point in winter and on the air change rate in the sum-
mer. As a consequence, window opening behaviour and heating set
point behaviour of occupants play an important role in determining
the energy consumption and indoor environment of a household.

Recently, the effect of indoor and outdoor temperature on the
window opening behaviour in offices has been investigated by
means of logistic regression [17e24]. The general trend has been to
infer the probability of thewindow state as a function of indoor and
outdoor temperature, while some have investigated the probability
of opening a window (change from one state to another) as a
function of temperature [20,21,23]. Haldi and Robinson argued that
the indoor temperature would be a better predictor than the out-
door temperature because indoor temperature is a driver for
opening and closing windows to a much larger extent than outdoor
temperature [18]. In a later paper Haldi and Robinson addressed the
differentiation between indoor and outdoor stimuli for openings

and closings and tested several modelling approaches [23]. Since
indoor environmental parameters are influenced by the state of the
windows, it is problematic to infer the latter based on indoor pa-
rameters e.g. indoor temperature. The problem is that the predic-
tive variable is influenced by the state that it is trying to predict. In a
cold climate, the low indoor temperatures would occur when the
windows are open and not when they are closed. In such a case the
result of the analysis would be that the inferred probability of a
window being open increases with decreasing indoor temperature,
with the illogical implication that the probability of opening a
window would increase with decreasing indoor temperatures.

Another problem with this approach is that the driving forces
for opening and closing a window might be different. The window
might be opened due to bad air quality or high humidity and closed
because of low indoor temperature. We have overcome these
problems by inferring the probability of opening and closing win-
dows (change from one state to another) rather than modelling the
state of thewindow itself. When using this approach, the predictive
variables are not influenced by the state of the window and the
most dominating drivers were inferred separately for each action
(opening and closing the window).

Most recent studies have been limited to the investigation of
thermal stimuli [17e22,25] although other studies have found that
many other stimuli play an important role in determining the
window opening behaviour [26e29]. Table 1 provides information
on sample size, measuring duration and building type of the
referenced studies on window opening and ventilation.

The objective of this study was to quantify the influence of
environmental factors on occupants’window opening behaviour in
Danish residential buildings.

2. Method

Andersen et al. [26] quantified behaviour of occupants in Danish
dwellings by means of a questionnaire survey. A definition of

Table 1
Overview of referenced studies of window opening and ventilation.

Reference Sample size Geographical location Duration of measurement

[13] One single family house Virginia, USA One year
[14] Two single family houses California and Virginia, USA One year
[15] 9 apartments and 19 single family houses Denmark One week
[16] 500 dwellings Denmark 2.5 nights (only nights)
[17] 15 office buildings, Transverse questionnaires from 890

subjects and longitudinal questionnaire and
measurements from 219 subjects

UK Transverse: 1 day each month for one
year. Longitudinal: 3 months

[18] 60 subjects from several office buildings Switzerland 3 months
[19] One office building (21 offices) Germany 13 months
[20] 2 office buildings (6 offices) UK 3 months
[21] 2 office buildings (6 offices) UK 3 months
[22] Surveys and spot measurements from 846 people in 33

office buildings
Pakistan 1 questionnaire each month for 16

months
[23] One office building (14 offices) Switzerland 7 years
[24] Three apartments and 39 student dormitory rooms Switzerland and Japan Apartments: 1 year. Dormitory: 1

month
[25] 1 office building (4 offices) Switzerland One winter
[26] Repeated questionnaire in 933 (summer) and 636

(winter) dwellings
Denmark 2 questionnaires

[27] 1100 dwelling North Carolina, USA 72 survey sessions, consisting of 2
observations of 1100 dwellings

[28] Literature review e e

[29] Literature review e e

[34] 24 dwellings Scotland, UK Daily visits and spot measurements for
7 months

[35] Summary report of 22 studies in dwellings. Sample size:
from 5 to 3000

Germany, The Netherlands,
Switzerland, UK and Belgium

Questionnaires, observations,
continuous measurements

[36] Repeated questionnaire in 933 (summer) and 636
(winter) dwellings

Denmark 2 questionnaires

1 With all windows and doors closed.
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standard behaviour patterns was attempted, but a link to the indoor
environment was missing due to the effects of behaviour of the
occupants on the indoor environment. As a follow up to the ques-
tionnaire survey and to fill this gap, simultaneous measurement of
occupant behaviour, and indoor and outdoor environment was
carried out in (and outside) 15 dwellings during the period from
January to August 2008.

2.1. The dwellings

Measurements were carried out in 10 rented apartments and
five privately owned single family houses. Five of the apartments
were naturally ventilated (apart from an exhaust hood in the
kitchen) while the other five were equipped with constantly
running exhaust ventilation from the kitchen and bathroom. Three
of the single-family houses were naturally ventilated while the
other two were equipped with exhaust ventilation.

With the exception of one (located 60 km from Copenhagen), all
dwellings were located less than 25 km from Copenhagen.

Features of the dwellings and residents are described in Table 2.
All dwellings were constructed from brick, used waterborne

radiators/convectors and natural gas boilers as a primary means of
heating and two of the dwellings (number 10 and 16) had a wood
burning stove. None of the dwellings had major overshadow from
adjacent buildings.

A survey among 16 690 persons in Denmark, found that outside
pollution and noise posed constraints to window opening in very
few cases even in the most densely populated areas [30]. Based in
this and on observations during the visits to the buildings, we
assessed that none of the buildings were located in an environ-
ment, where outside pollution and outside noise posed constraints
to window opening. In two dwellings (1 and 7) some of the resi-
dents smoked inside.

2.2. Measurements

The following variables were measured continuously in all 15
dwellings.

Indoor environment factors measured every 10 min

- Dry bulb temperature (�C)
- Relative humidity (RH) (%)
- Illuminance (Lux)

- CO2 concentration (ppm)

Outdoor environment acquired from meteorological measuring
stations in 10 min intervals [31]

- Air temperature (�C)
- RH (%)
- Wind speed (m/s)
- Global Solar radiation (W/m2)
- Sunshine hours (daily values) (Number of hours with sunshine
(insolation higher than 120 W/m2))

Behaviour

Window position (open/closed)*
*In three of the dwellings, the actual opening angle of the

window was measured.
Fig. 1 depicts some of the monitored windows.
The indoor environment measurements were carried out with

Hobo U12-012 data loggers [32]. The CO2 concentration was
measured using a Vaisala GMW22 sensor [33] connected to the
Hobo logger as depicted in Fig. 2. Both the CO2 sensors and the
Hobo data loggers were newly calibrated from the factory. The CO2
sensors were tested against a newly calibrated Innova multigas
analyser both before and after the measuring period. The temper-
ature sensors in the hobo data loggers were also tested before the
measurements. The outdoor environmental variables were ob-
tained from the Danish meteorological institute [31]. Data from the
meteorological station closest to each of the dwellings was used.
The closest meteorological stations did not measure precipitation
and since local wind direction is very sensitive to local conditions it
was decided not to include the direction of the wind.

The window position (open/closed) was measured using a Hobo
U9 sensor [32]. Three of the windows were hitched in the top and
tilted outwards when opening. In these cases the tilt was measured
using an accelerometer (HOBO UA-004-64 Pendant G) [32]
attached to the window frame. In this way, the opening angle of
the window was measured.

Generally, all measurements were carried out in the (main)
living room and the (main) bedroom in each dwelling. The window
sensors were installed on windows that inhabitants used most
often when ventilating the dwelling. The number of operable
windows varied between dwellings from 1 to 4 windows in the
bedrooms and 3 to 6 windows in the living rooms.

Table 2
Description of residents and characteristics of the dwellings.

Dwelling
index

Number of openings
in period

Average age of
the residents

Number of
residents

Year of construction
(and renovation)

Floor area
(m2)

Distance from
meteorological
station (km)a

Floor
level

Smokers amongst
residents

1 334 65 1 1994 126 8 Ground Yes
3 82 57 2 1928 145 13 Ground No
4 235 70 2 1956 (1976) 130 4 Ground No
5 73 76 2 1981 (2001) 83 11 1st No
6 337 78 2 1945 86 5 1st No
7 718 63 1 1981 (2001) 83 11 2nd Yes
8 258 55 2 1945 109 5 2nd No
9 25 35 3 1945 87 5 1st No
10 65 59 2 1901 (1957) 190 8 Ground No
11 82 71 2 1945 77 5 1st No
12 1 64 1 1945 109 5 1st No
13 341 60 3 1981 (2001) 80 11 Ground No
14 241 28 2 1981 (2001) 85 11 Ground No
15 166 60 4 1981 (2001) 84 11 1st No
16 153 26 2 1967 139 9 Ground No

a The distance was measured in a straight line from the address to the geographical location of the weather station.
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Fig. 1. Pictures of windows in some of the monitored dwellings. The rest of the monitored windows were of similar type and of similar size.

Fig. 2. Pictures of the instruments used to measure the indoor environmental variables and window opening behaviour. Top left: CO2 monitor connected to a data-logger with built
in temperature, relative humidity and illumination sensors. Top right: Window state sensor (open/closed). Bottom: window state sensor (open/closed) and window position sensor.

R. Andersen et al. / Building and Environment 69 (2013) 101e113104
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2.3. Place of measurement

Our measurements were limited to two rooms in each dwelling.
Brundrett [34] found that open windows were most commonly
found in the bedroom, particularly the main bedroom, while the
sitting room, kitchen and the dining roomhad the lowest frequency
of open windows. This was later supported by Dubrul [35] who
found that bedrooms were the main ventilation zone, whereas the
majority of windows which were never opened was in the living
rooms. Furthermore, the percentage of open windows in kitchens
and bathrooms was similar to that of living rooms. Based on these
findings we chose to conduct the measurements in the main
bedroom and in the main living room in each dwelling. This choice
was made in an effort to select the rooms with the highest and
lowest window opening frequency.

3. Processing and preparation of data

The indoor environment sensors were placed on internal walls
at a height of roughly 1.8 m above the floor with a minimum dis-
tance of one metre to the closest radiator/convector. We attempted
to place the sensors so they would not be hit by direct sunlight. In
eight of the dwellings, this was not always possible due to accep-
tance of the occupants in the dwellings and other practicalities. In
the cases when direct sunlight fell on the sensors, the temperature
measurements were corrected for the heating of the sensor. This
was done in periods when the measured illuminance was larger
than 1000 lux. In these cases the temperature was corrected by
linear interpolation between temperature measurements
30 min prior to and one hour after direct sunlight fell on the sensor.
In the eight dwellings, between 1% and 2% of the temperature
measurements were corrected for direct solar radiation.

The CO2 concentration was used as an indicator of the occu-
pancy of the rooms where the measurements took place. If the CO2
concentration was below 420 ppm and the window was closed the
room was classified as being unoccupied. Furthermore, if the CO2
concentration was higher than 420 ppm, but decreased and
continued to decrease until reaching values below 420 ppm and the
window was closed in the entire period, the roomwas classified as
unoccupied during the period of concentration decay.

The value of 420 ppmwas chosen since earlier observations had
shown that the outdoor concentrations might reach levels of up to
400 ppm. To ensure that long unoccupied periods were not clas-
sified as occupied an uncertainty range of 20 ppmwas added to the
highest observed outdoor concentration.

The room was classified as occupied if the window was open.
This classification was based on a questionnaire survey conducted
by Andersen et al. [36] who found that the statement “I had to leave
the dwelling” was mentioned amongst the most common reasons
for closing windows.

If the bedroom and the living room were both unoccupied, the
dwelling was classified as unoccupied. Periods when the dwelling
was unoccupied were not taken into consideration in the analysis.

When analysing the window opening data the database was
divided depending on the state of the window (open/closed) to

infer the probability of opening and closing the window (change
from one state to another) separately. The 15 dwellings were
divided into four groups based on ownership (owner-occupied or
rental) and ventilation type (natural ventilation or mechanical
ventilation) (Table 2). This division was based on the findings in
Andersen et al. (2009) [26] and an assumed effect of ventilation
principle on window opening behaviour. Table 3 shows how the
dwellings were divided in the four groups.

3.1. Statistical analysis

Multivariate logistic regression with interactions between
selected variables was used to infer the probability of a window
opening and closing event. The method relies on the probability
function described in formula (1).

log
�

p
1� p

�
¼ aþ b1$x1 þ b2$x2 þ/þ bn$xn (1)

where

p is the probability of an opening/closing event
a is the intercept
b1�n are coefficients
x1�n are explanatory variables such as temperature, CO2 con-
centration etc.

However, the probability might depend differently on x1 at one
level of x2 as compared to another level of x2 (e.g. an increase in
temperaturemight increase the probability of opening awindow in
the bedroom, whereas the same increase might result in a lower
probability in the living room). An example like the one described
above would not be well described by a model based on equation
(1). Equation (2) deals with interactions between variables by
adding interaction terms to the model.

log
�

p
1� p

�
¼ aþ b1$x1 þ b2$x2 þ/þ bn$xn þ c12$x1$x2

þ c13$x1$x3 þ/

(2)

Equation (2) was used to infer the probability of windows being
opened or closed. The Akaike information criterion (AIC) was used
as a basis for forward and backward selection of variables in the
regression models [37]. Each individual variable was first fitted to
the measured window opening data and then AIC was calculated

Table 3
Description of groups investigated related to the ownership and ventilation type.

Group Ownership Ventilation type Dwelling index

1 Owner-occupied Natural 3, 4, 16
2 Owner-occupied Mechanical 1, 10
3 Rental Natural 6, 8, 9, 11, 12
4 Rental Mechanical 5, 7, 13, 14, 15

Table 4
List of explanatory variables used to infer the models of opening and closing
windows.

Variable Unit

Season Winter/spring/summer
Room Bedroom/living room
Time of day Night/morning/day/afternoon/evening
Week day Workday/weekend
Outdoor temperature �C
Wind speed m/s
Outdoor relative humidity %
Solar radiation W/m2

Solar hours h
Indoor temperature �C
Indoor relative humidity %
Indoor illumination Lux
Indoor CO2 concentration ppm
Indoor Dew point �C
Dwelling index e

R. Andersen et al. / Building and Environment 69 (2013) 101e113 105



Author's personal copy

for each fit. The variable with the lowest AIC was selected and the
remaining variables were then tested one by one on a bivariate
level, to see if any of the bivariate models resulted in a lower AIC. If
this was the case, the remaining variables were tested in a model
with three variables and so on (forward selection). At each step, the
AIC was also calculated for models, where each of the selected
variables was removed from the models (backward selection). In
this way, the final model included variables and interaction terms
that resulted in the lowest AIC. To limit the complexity of the
model, only interaction terms between continuous and nominal
variables, e.g. indoor temperature and day of weekwere included in
the analyses. Table 4 lists all explanatory variables used in the
inference of the window opening and closing models.

In the interpretation of the coefficients, the sign, the size and the
scale of the corresponding variable have to be taken into account.
For example, a coefficient for solar hours of 0.057 might seem to
impact the probability more than an outdoor relative humidity
coefficient of 0.029 (group 4, opening model). However, the scales
of the two variables (solar hours: 0 to 16.1, outdoor RH: 28%e100%)
should be taken into account: Schweiker et al. [39] suggested to
multiply the scale of the variable with the coefficient, to get an
indication of themagnitude of the impact from each variable. In the
example described above the magnitude of the impact was
0.057(16.1-0) ¼ 0.91 and 0.029(100-28) ¼ 2.08 for the solar hours
and the outdoor relative humidity respectively, revealing that the
outdoor RH had a higher impact on the probability than the solar
hours.

When using logistic regression, it is required that all variables
are independent. Since the data was obtained in 15 dwellings with
different physical properties and different inhabitants, all variables
could not be assumed a priori to be independent of the dwelling it
was obtained from. Variable independency was tested by assigning
an index to each of the dwellings, which was used as a factor in the
analyses. If an interaction term between a variable and the dwelling
index was retained in the model, it was taken as an indication of

Table 5
Variable transformations. Log is the natural logarithm.

Variable Transformed variable

CO2 concentration [ppm] Log(CO2) [Log(ppm)]
Illumination [Lux] Log(Illumination) [Log(Lux)]
Wind speed [m/s] Log(Wind speed þ 1) [Log(m/s)]
Solar radiation [w/m2] Log(Solar radiation þ 1) [Log(W/m2)]

Table 6
Descriptive statistics of the monitored variables used to infer the window opening and closing models.

Indoor temperature Indoor R.H. CO2 Outdoor temperature Outdoor R.H. Lux Wind Solar radiation Solar hours

Group 1
Windows closed Max 30.3 69 3065 26.9 100 16063 13.2 918 16.1

Min 17.1 24 355 �6.9 24 4 0.0 0 0.0
Mean 22.1 46 862 9.6 76 159 2.8 199 8.5
Median 21.8 45 773 9.3 76 51 2.5 63 8.1
St. Dev. 2.0 7 369 6.2 18 458 2.1 252 5.0

Windows open Max 29.2 67 2229 25.5 100 8077 9.1 904 16.1
Min 17.2 26 328 �1.4 30 4 0.0 0 0.0
Mean 22.9 38 520 13.5 61 278 3.1 413 10.8
Median 22.8 38 464 13.6 58 99 3.0 437 13.0
St. Dev. 1.8 6 175 5.1 18 447 1.7 272 4.7

Group 2
Windows closed Max 27.3 49 4453 24.0 100 1494 17.3 904 14.9

Min 13.5 24 377 �6.0 25 4 0.0 0 0.0
Mean 22.3 36 722 7.5 75 111 3.3 165 6.9
Median 22.6 35 648 7.0 78 36 2.7 23 6.1
St. Dev. 2.0 4 310 5.1 18 183 2.6 234 4.8

Windows open Max 27.3 53 1959 24.0 100 32280 17.3 883 14.9
Min 12.0 25 363 �6.0 25 4 0.0 0 0.0
Mean 18.1 40 516 8.0 74 295 4.3 203 6.7
Median 17.2 40 468 7.0 78 43 3.7 91 6.3
St. Dev. 3.2 5 142 5.4 19 1500 2.9 240 4.8

Group 3
Windows closed Max 31.2 63 3634 26.3 100 32280 13.0 904 15.3

Min 14.1 21 338 �5.8 24 4 0.0 0 0.0
Mean 22.3 37 780 7.4 73 179 3.3 164 6.1
Median 22.3 37 612 6.8 76 43 2.9 36 5.5
St. Dev. 2.0 5 462 5.2 18 888 2.2 230 5.0

Windows open Max 27.7 54 3295 26.3 100 2456 13.0 883 15.2
Min 11.5 22 333 �5.8 25 4 0.0 0 0.0
Mean 19.9 38 590 7.9 75 80 3.3 141 6.7
Median 19.1 38 520 6.3 80 43 2.9 6 5.7
St. Dev. 3.5 5 232 6.0 19 130 2.2 229 5.4

Group 4
Windows closed Max 28.8 73 4636 28.6 100 23442 13.5 918 16.1

Min 9.8 21 333 �7.7 28 4 0.0 0 0.0
Mean 20.9 42 702 7.9 80 85 3.0 138 6.6
Median 20.8 42 628 7.1 84 36 2.5 11 6.2
St. Dev. 2.2 8 292 5.9 17 206 2.3 208 4.7

Windows open Max 29.1 69 3530 29.4 100 13935 13.5 918 16.1
Min 11.9 22 328 �7.2 28 4 0.0 0 0.0
Mean 22.0 44 492 14.1 71 132 3.1 293 9.2
Median 22.2 43 437 14.6 71 59 2.7 238 9.4
St. Dev. 2.4 8 142 5.9 19 229 2.1 276 5.0
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dependence and the variable was removed from the model. Vari-
ables that did not interact with the dwelling index were assumed to
be independent of the individual dwelling.

Correlations between explanatory variables may result in
inflation of the estimated variance of the inferred coefficient, which
in turn will result in too wide confidence intervals. To estimate the
size of the inflation due to correlations between all explanatory
variables (multicolinearity), generalized variance inflation factors
(GVIF) were calculated for coefficients of all continuous explanatory
variables. The GVIF estimates the inflation of the variance, due to
multicolinearity as compared to no multicolinearity. Since the GVIF
is an estimate of the inflation of the variance, the GVIF1/(2$Df) is an
estimate of the factor by which the standard error and confidence
interval is inflated due to multicolinearity between explanatory
variables.

Prior to the regression analyses, four variables were transformed
to obtain a better distribution. Table 5 describes how the variables
were transformed.

The statistical analyses were conducted using the statistical
software “R” and the models were inferred using the ‘step’ function
in R [38].

4. Results

In this section, the main results of the statistical analysis are
presented. Table 6 presents descriptive statistics of all measured
variables in each of the four groups.

All results from group 1 are presented in this section, while
tables with inferred coefficients and results from the VIF analyses
from groups 2, 3 and 4 are presented in Appendix 1.

The dwelling index affected the impact of some of the explan-
atory variables as concerns the probability of opening and closing a
window. This indicates different habits in the different dwellings
included in the four groups, which were not described by the
measured variables. For example, the CO2 concentration interacted
with the dwelling index in the model for closing windows in group
3, indicating that the windows were closed at different (but
distinct) concentrations of CO2 in each dwelling. The variables that
interacted with the dwelling index were removed from the models
where the interaction occurred. In the further analyses, the
dwelling index was not included, since we were not interested in
the behaviour in each single dwelling, but in the overall behaviour
in all of the surveyed dwellings.

Table 7
A list of variables that interacted with the dwelling index indicating that they were not independent of the dwelling in which they were measured. The table states in which
models (Open and/or close) the interactions were found. If interactions with the dwelling index occurred, the variable was removed from the window opening and/or closing
models.

Model Indoor temperature Outdoor temperature Solar radiation CO2 concentration Time of day Illumination

Group 1 None None None None None None
Group 2 Open and Close Open Open None None None
Group 3 None None Close Close None None
Group 4 Close None None Close Open and Close Close

Table 8
Coefficients andmagnitudes of the opening and closingmodels inferred based on data fromGroup 1. The coefficient refers to the “a” and “b1�n” in formula (2). Themagnitude is
a measure of the impact of the variable on the probability. It was calculated as the coefficient of the variable multiplied by the scale of the variable.

Variable Time/room Open window Close window

Coefficient Confidence interval Magnitude Coefficient Confidence interval Magnitude

2.5% 97.5% 2.5% 97.5%

Intercept Spring e Bedroom Night �23.83 �27.78 �19.88 �1.93 �3.67 �0.19
Morning �23.04 �27.06 �19.03 �0.84 �2.71 1.03
Day �24.06 �28.10 �20.03 �1.22 �3.09 0.65
Afternoon �24.32 �28.35 �20.29 �1.00 �2.87 0.87
Evening �24.47 �28.49 �20.45 �0.38 �2.25 1.48

Intercept e Spring e Living room Night �10.58 �16.40 �4.76 �5.31 �7.76 �2.87
Morning �9.80 �15.66 �3.93 �4.22 �6.76 �1.69
Day �10.82 �16.69 �4.94 �4.61 �7.15 �2.07
Afternoon �11.08 �16.95 �5.20 �4.39 �6.93 �1.85
Evening �11.22 �17.09 �5.35 �3.77 �6.31 �1.23

Intercept e Summer e Bedroom Night �24.72 �28.69 �20.75 �0.77 �2.59 1.05
Morning �23.94 �27.97 �19.91 0.32 �1.62 2.26
Day �24.96 �29.00 �20.91 �0.06 �2.01 1.88
Afternoon �25.22 �29.26 �21.17 0.16 �1.79 2.10
Evening �25.36 �29.40 �21.33 0.77 �1.17 2.72

Intercept e Summer e Living room Night �11.47 �17.35 �5.60 �4.15 �5.98 �2.32
Morning �10.69 �16.58 �4.80 �3.06 �5.02 �1.11
Day �11.71 �17.60 �5.82 �3.45 �5.40 �1.49
Afternoon �11.97 �17.85 �6.09 �3.23 �5.19 �1.27
Evening �12.12 �17.95 �6.28 �2.61 �4.56 �0.66

CO2 concentration [log(ppm)] Bedroom 1.87 1.37 2.37 4
Living room 0.23$10�3 �0.81 0.81 0.00

Indoor temperature [�C] 0.163 0.11 0.22 2.15
Solar radiation [log(W/m2)] 0.501 0.14 0.86 3.42
Outdoor temperature [�C] �0.15 �0.19 �0.12 �4.07
Outdoor relative humidity [%] �0.02 �0.03 �0.01 �1.21
Indoor relative humidity [%] Bedroom 0.037 �0.003 0.077 1.56

Living room 0.104 0.046 0.162 4.34
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Table 7 shows a list of variables that were removed from the
models due to interactions with the dwelling index.

4.1. Group 1: owner-occupied, naturally ventilated dwellings

As expected, CO2 concentration, indoor temperature and solar
radiationwere positively correlated with the probability of opening
the window, while Outdoor Temperature was negative correlated
with the probability of closing windows. In the bedroom, the CO2
concentration was the most important variable for the probability
of opening windows, while it did not have a significant effect in the
living room (the confidence interval for the coefficient contains the
number 0). The indoor relative humidity had the biggest effect on
the closing probability in the living room, but did not have a sig-
nificant effect in the bedroom. Both the opening and closing
probabilities were influenced by the season and by the time of day.
Since nowindowwere opened during thewinter time, the seasonal
effects only take spring and summer into account. During winter,
the inferred probability of opening a window was 0.

The coefficients and intercepts listed in Table 8 constitute the
opening and closing model for group 1. The two formulas below are
examples of the logistic regression equation for opening probability
for a morning in spring in the living room (3) and bedroom (4):

log
�

p
1� p

�
¼ �9:80þ 0:23$10�3$logðCO2Þ þ 0:163$ti

þ 0:501$logðRadþ 1Þ (3)

log
�

p
1� p

�
¼ �23:04þ 1:87$logðCO2Þ þ 0:163$ti

þ 0:501$logðRadþ 1Þ (4)

Where, p is the probability of opening a window within the next
10 min, CO2 is the CO2 concentration in ppm, ti is the indoor tem-
perature in �C and Rad in the solar radiation in W/m2.

The results in Table 9 indicate that the confidence intervals of
some variables may be inflated due to multicolinearity (the GVIF1/
(2$Df) is a measure of inflation due to multicolinearity). Especially
the standard error of the categorical variable ‘Room’ and the
interaction terms were inflated due to multicolinearity. This in-
dicates that some variables were biased by the room in which they
were measured.

The window opening model for group 1 had three continuous
variables (CO2 concentration, Indoor temperature and Solar radia-
tion). Fig. 3 gives an overview of the effects of these variables on the
probability of opening a window. The solar radiation was set to
200 W/m2 in the figures on the left and in the middle. In the figure
on the right, the CO2 concentration was set to 900 ppm.

Fig. 4 gives an overview of the effect of the three continuous
variables (Outdoor temperature, Outdoor relative humidity and
indoor relative humidity) on the probability of closing a window.
61% was used as outdoor relative humidity in Fig. 4 left and right
and 38% was used as indoor relative humidity in Fig. 4 middle.

4.2. Group 2: owner-occupied, mechanically ventilated dwellings

The models inferred from group 2, 3, and 4 are presented in
Tables 1, 3 and 5 in the appendix.

Due to interaction with the dwelling index, indoor and outdoor
temperature and solar radiation were removed from the window
opening model and indoor temperature was removed from the
window closing model (Table 7).

The CO2 concentration was the most important variable in the
determination of the window opening probability, while Outdoor

temperature and illumination turned out to be the most important
variables in the window closing model. From the confidence in-
tervals, it is evident that all the variables, except the outdoor
temperature for the bedroom and the solar radiation for the living
room had a statistically significant impact on the opening/closing
probabilities (Table 1 in appendix).

The Variance inflation factors turned out to be small (lower than
5) for all the variables in the models (Table 2 in the appendix).

4.3. Group 3: rented, naturally ventilated dwellings

All of the variables in the window opening model were assumed
to be independent from the dwelling they were measured in since
none of them interacted with the dwelling index (Table 7). The CO2
concentration was the only continuous variable having an impact
on the window opening behaviour.

The variables Solar Radiation and CO2 concentration were
removed from the model of closing behaviour since they interacted
with the dwelling index. Indoor and outdoor temperature were
found to be the most important variables driving the closing
behaviour. As expected, they had a negative correlation with the
exception of the indoor temperature in the bedroom, which was
positively correlated with the probability of closing window
(Table 3 in the appendix).

The multicolinearity analysis for group 3 (Table 4 in the
appendix) revealed highly inflated standard errors of the vari-
ables ‘time’, ‘room’ and the ‘time’e‘room’ interaction terms. This
indicates higher levels of uncertainty in the coefficients. However,
the predictive power of the model will only be affected by this if the
model is used on data that falls outside the ranges in Table 6
(assuming similar colinearities).

4.4. Group 4: rented, mechanically ventilated dwellings

Both in the window opening and window closing model, the
variable ‘Time’ interacted with the dwelling index and were
removed from themodel. In the closingmodel, indoor temperature,
CO2 concentration and illumination depended on the dwelling in-
dex and were removed (Table 7).

The results in Table 6 in the appendix show that the confidence
interval for many of the coefficients was highly inflated. This might
explain the unexpected negative correlation between indoor tem-
perature in the living room and opening probability. Since the
interaction between room and indoor temperature was inflated up
to 14 times, the impact of the room on the indoor temperature
coefficient was not as certain, compared to the case with no
multicolinearities.

The impact of outdoor temperature on the closing probability
was inflated up to 13 times due to multicolinearity. Consequently,

Table 9
Results of performed VIF analysis for variables of group 1. The GVIF1/(2$Df) describes
how inflated the confidence intervals in Table 8 are due to multicolinearity.

Variable Opening window Closing window

GVIF Df GVIF1/(2$Df) GVIF Df GVIF1/(2$Df)

Time 3.7 4 1.2 1.9 4 1.1
Solar radiation 3.5 1 1.9
Season 1.1 1 1.0 1.9 1 1.4
Room 353 1 18.8 52 1 7.2
Indoor temperature 1.1 1 1.1
CO2 concentration 3.0 1 1.7
Room: CO2 338 1 18.4
Relative humidity 6.4 1 2.5
Outdoor temperature 2.4 1 1.6
Outdoor relative humidity 3.0 1 1.7
RH: Room 60 1 7.7

R. Andersen et al. / Building and Environment 69 (2013) 101e113108



Author's personal copy

the outdoor temperature coefficients in the closing model may be
uncertain. The uncertainties created by the multicolinearities will
only affect the model’s predictive power if the models are used on
data that is outside the ranges listed in Table 4 (assuming similar
colinearities).

4.5. Generalized patterns

Generally, the occupants’ window opening and closing behav-
iour was governed by different variables indicating that the occu-
pants had different reasons for opening and closing windows.

From the four opening and closing models, some common
patterns of behaviour appeared. The CO2 concentration had an
impact on the window opening probability while the outdoor
temperature affected the closing probability.

Interestingly, wind speed did not affect windowopening/closing
behaviour in any model of the four groups.

5. Discussion

5.1. Behaviour patterns in simulation programs

The results from the analysis provide a possibility of defining
window opening behaviour patterns for simulation purposes.
Table 8 and Tables 1, 3 and 5 in the appendix provide a method for
calculating the probability that the window will be opened or
closed during the next 10 min. In the simulation program, a com-
parison with a random number can determine if the window is
opened/closed or not. Since themodels predict the probability of an
opening/closing event during the next 10 min, the random number
should change in 10 min intervals.

When introducing the models and comparisons with random
numbers into the simulation software, the results of identical
simulations may differ, since the random numbers change between
simulations. By running several simulations, it is possible to obtain
probability distributions of the performance indicators, rather than
a single number. As a consequence, the implementation of the
models in simulation software will transform the software from a
purely deterministic tool to a simulation tool with capabilities of
simulation stochastic behaviour patterns.

Rijal et al. [17] describes three different assumptions (fixed
schedules, fixed rules based on indoor and/or outdoor conditions,
fixed ventilation/infiltration rates) that designers have made in the
past when modelling window opening behaviour. It is clear that
these strategies of modelling occupant behaviour will lead to dif-
ferences in the simulated indoor environment and in the simulated
energyconsumption of the building. Theproposedmodels are based
on measurements in 15 dwellings. While they cannot be assumed
representative of the Danish population, an implementation of the
models into a simulation program would significantly improve the
validity of the simulation results in two ways: It would enable
comparability of results from different models, since they would be
based on the same behaviour patterns. Secondly, because the
behaviour in the models are based on real behaviour it has a better
chance of mimicking the behaviour of the occupants in the building
and thus predicting the indoor environment and energy consump-
tion correctly. The models are valid for variables that are within the
ranges described in Table 6, assuming similar colinearities.

5.2. Occupancy

The occupancy of the dwellings was determined using the
monitored CO2 concentration. This method was better than not

Fig. 4. Graphical representation of the window closing model from group 1. The probability of closing a window is depicted for different levels of indoor relative humidity as a
function of outdoor temperature (left), for different outdoor temperatures as a function of outdoor relative humidity (middle) and for different outdoor temperatures as a function of
the indoor relative humidity.

Fig. 3. Graphical representation of the window opening model. The probability of opening a window is depicted for different indoor temperatures as a function of CO2 concen-
tration (left) for different CO2 concentrations as a function of indoor temperature (middle) and for different temperatures as a function of solar radiation.

R. Andersen et al. / Building and Environment 69 (2013) 101e113 109



Author's personal copy

considering the occupancy but may have led to uncertainties since
short changes in the occupancy may have passed unnoticed and
since the dwelling may have been falsely characterized as unoc-
cupied if the occupants stayed in an isolated room that was not
monitored. Since most of the periods without occupancy were
removed, any correlations between behaviour and CO2 concentra-
tion indicate relationships between air quality and behaviour.

5.3. Statistical approach

We have used logistic regression to infer the probability of a
window opening or closing event. In using this method we have
assumed that the probability function looks like formula (2). Addi-
tionallywe have assumed that all observationswere independent of
each other. This assumption is questionable as the observations
were gathered in 15 dwellings. Essentially the assumption would
hold true if all inhabitants of the dwellings reacted similarly to the
conditions they were subjected to. In any other case the observa-
tions in each dwelling will be influenced by the habits of the in-
habitants of the individual dwelling and as a result they would not
be independent from each other. We have dealt with this problem
by using a dwelling index as a factor in the first attempts to infer
models. Interactions between variables and dwelling index were
taken as signs of dependence and the variables were removed from
the final models. In doing so, we may have removed variables that
had an influence on the opening/closing probabilities.

Wechose touse theAkaike informationcriterion (AIC)as abasis of
variable selection in the inference of the models. Another option
would be to use Wald tests to test the significance of each term and
use this as a selection criterion. We chose to use the AIC, since
selectingvariablesbasedontheir significancedoesnot take theriskof
overfitting into account. This risk increases with the number of ob-
servations. TheAIC includes apenalty that increaseswith thenumber
of estimated variables in the model, which discourages overfitting.

5.4. Seasonal variations

The measurements were made during the winter, spring and
summer. As a consequence, the results in this paper are only valid
for these seasons. There is, however, no evidence that the behav-
iour of occupants depends differently on the measured variables in
the autumn than in spring (or other parts of the year if the model
does not include seasonal effects). When implementing the models
into simulation programs, the models without seasonal effects
(Tables 1 and 3 in the appendix) can be used for the entire year. In
models including seasonal effects, the spring season can be used as
a representation in autumn.

5.5. Variables for determination of window opening behaviour

Indoor relative humidity influenced the opening/closing
probability (Table 8, and Tables 1 and 5 in the appendix), even
though it was in the range 30%e70%, where humans are modestly
sensitive to relative humidity. On the other hand, the relative
humidity does affect both thermal sensation and perceived air
quality and this might be why it affected the opening/closing
probability.

Johnson and Long [27] conducted a visual survey of residential
window and door positions in North Carolina. They found that the
window and door opening behaviour was affected by a number of
variables including weather, dwelling characteristics and anthro-
pological variables. An AIVC report [35] concluded that there were
considerable differences in the ventilations behaviour’s weather
dependency, which indicates that other variables play a significant
role in determining the ventilation behaviour. These results are in
accordance with our work and underline the importance of taking
more than the temperature into account when investigating the
behaviour of occupants.

6. Conclusions

Based on measurement of window opening behaviour and in-
door/outdoor conditions in 15 dwellings duringwinter, spring, and
summer it was shown that behaviour differed between dwelling
type (rented or owned, mechanical or natural ventilation) and
within dwelling type. The indoor CO2 concentration and the out-
door temperature were the two single most important variables in
determining the probability of opening and closing windows
respectively.

Based on the measurements, four models of occupants’window
opening and closing behaviour patterns in building simulation
programs was proposed. When implemented into simulation pro-
grams, this definition will significantly increase the validity of the
simulation outcome.

Acknowledgement

This study was conducted as part of a project funded by Bjarne
Saxhof’s Foundation.

Appendix 1. Inferred coefficients and results of the VIF
analyses of group 2, 3 and 4.

Group 2:

Table 1
Coefficients and magnitudes of the opening and closing models inferred based on data from Group 2. The coefficient refers to the “a” and “b1�n” in formula (2). The magnitude
is a measure of the impact of the variable on the probability. It was calculated as the coefficient of the variable multiplied by the scale of the variable.

Variable Time/Room Open window Close window

Coefficient Confidence interval Magnitude Coefficient Confidence interval Magnitude

2.5% 97.5% 2.5% 97.5%

Intercept Bedroom �13.49 �15.64 �11.33 e �4.75 �5.53 �3.98 e

Living room �13.49 �15.64 �11.33 e 4.19 3.03 5.34 e

Illumination [log(Lux)] e 0.27 0.17 0.37 2 �0.62 �0.67 �0.57 �6
CO2 concentration [Log(ppm)] e 1.40 1.10 1.71 3 e e

Outdoor Relative Humidity [%] e �0.02 �0.03 �0.01 �1.5 e e

Solar hours [h] e e e �0.06 �0.09 �0.02 �0.86
Outdoor temperature [�C] Bedroom e e 0.03 �0.02 0.08 0.90

Living room e e �0.26 �0.34 �0.19 �7.85
Solar radiation [Log(W/m2)] Bedroom e e 0.59 0.45 0.74 4.04

Living room e e 0.04 �0.17 0.26 0.30
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Group 3:

Table 2
Results of performed VIF analysis for variables of group 2. The GVIF1/(2$Df) describes
how inflated the confidence intervals in Table 1 are due to multicolinearity.

Variable Opening window Closing window

GVIF Df GVIF1/(2$Df) GVIF Df GVIF1/(2$Df)

Lux 1.4 1 1.2 1.9 1 1.4
CO2 1.3 1 1.1
Outdoor RH 1.4 1 1.2
Solar radiation 6.8 1 2.6
Sun hours 1.7 1 1.3
Room: Outdoor temperature 7.1 1 2.7
Room: Solar radiation 8.9 1 3.0
Room 9.8 1 3.1
Outdoor temperature 3.0 1 1.7

Table 3
Coefficients and magnitudes of the opening and closing models inferred based on data from Group 3. The coefficient refers to the “a” and “b1�n” in formula (2). The magnitude
is a measure of the impact of the variable on the probability. It was calculated as the coefficient of the variable multiplied by the scale of the variable.

Variable Time/room Open window Close window

Coefficient Confidence interval Magnitude Coefficient Confidence interval Magnitude

2.5% 97.5% 2.5% 97.5%

Intercept for bedroom Night �17.69 �18.80 �16.59 �2.68 �6.50 1.14
Morning �15.51 �16.63 �14.38 �0.51 �6.37 5.36
Day �17.09 �18.24 �15.94 �7.67 �13.84 �1.50
Afternoon �18.23 �19.40 �17.05 �12.78 �20.94 �4.63
Evening �17.13 �18.26 �15.99 �13.22 �20.81 �5.64

Intercept for living room Night �17.69 �18.80 �16.59 14.68 9.90 19.45
Morning �15.51 �16.63 �14.38 16.85 10.32 23.38
Day �17.09 �18.24 �15.94 9.69 2.88 16.50
Afternoon �18.23 �19.40 �17.05 4.57 �4.07 13.22
Evening �17.13 �18.26 �15.99 4.13 �3.98 12.24

CO2 concentration [Log(ppm)] 1.75 1.60 1.90 4.16
Indoor Temperature [�C]
Bedroom

Night 0.40 0.29 0.52 6.55
Morning 0.15 0.03 0.27 2.39
Day 0.21 0.08 0.33 3.38
Afternoon 0.70 0.57 0.83 11.36
Evening 0.60 0.48 0.73 9.79

Indoor Temperature [�C]
Living room

Night �0.25 �0.37 �0.13 �4.05
Morning �0.51 �0.69 �0.32 �8.21
Day �0.45 �0.65 �0.25 �7.22
Afternoon 0.05 �0.23 0.33 0.75
Evening �0.05 �0.29 0.19 �0.81

Outdoor Temperature [�C]
Bedroom

Night 0.01 �0.08 0.09 0.19
Morning 0.12 0.03 0.21 3.85
Day �0.13 �0.23 �0.04 �4.28
Afternoon �0.07 �0.16 0.03 �2.10
Evening �0.09 �0.18 0.01 �2.77

Outdoor temperature [�C]
Living room

Night �0.13 �0.22 �0.04 �4.09
Morning �0.01 �0.11 0.08 �0.43
Day �0.27 �0.36 �0.17 �8.56
Afternoon �0.20 �0.30 �0.10 �6.37
Evening �0.22 �0.32 �0.12 �7.05

Indoor relative humidity [%] Night �0.25 �0.32 �0.17 �7.75
Morning �0.16 �0.24 �0.08 �4.93
Day 0.06 �0.02 0.14 1.84
Afternoon �0.15 �0.24 �0.07 �4.88
Evening �0.07 �0.15 0.02 �2.14

Solar hours [h] �0.08 �0.11 �0.06 �1.27

Table 4
Results of performed VIF analysis for variables of group 3. The GVIF1/(2$Df) describes
how inflated the confidence intervals in Table 3 are due to multicolinearity.

Variable Opening window Closing window

GVIF Df GVIF1/(2$Df) GVIF Df GVIF1/(2$Df)

CO2 1.1 1 1.0
Time 1.1 4 1.0 7.07Eþ09 4 17.0
Room 230 1 15.2
Indoor temperature 11.7 1 3.4
Sun hours 2.2 1 1.5
Relative humidity 15.1 1 3.9
Outdoor temperature 22.0 1 4.7
Room: indoor temperature 263 1 16.2
Time: indoor temperature 774.3Eþ06 4 12.9
Time: relative humidity 110.6Eþ06 4 10.1
Outdoor temperature: time 18.6Eþ03 4 3.4
Room: outdoor temperature 7.3 1 2.7
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Group 4:
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Variable Season/Room Open window Close window

Coefficient Confidence interval Magnitude Coefficient Confidence interval Magnitude
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Intercept e Bedroom Winter �18.53 �20.55 �16.51 �4.28 �5.21 �3.35
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Summer �0.019 �0.04 0.003 �0.68 �0.057 �0.233 0.119 �2.09

Outdoor temperature e Living room Winter 0.059 0.03 0.09 2.16 �0.17 �0.29 �0.04 �6.06
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Living room 0.35 0.28 0.42 2.39 0.13 0.09 0.16 0.86
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Illumination 0.26 0.20 0.33 2.30
Indoor temperature Bedroom 0.10 �1.92 2.12 1.93

Living room �0.38 �0.47 �0.29 �7.25
CO2 concentration Bedroom 1.16 0.91 1.40 3.04

Living room 0.30 �0.12 0.71 0.78
Indoor relative humidity Bedroom 0.063 0.051 0.075 2.99

Living room 0.036 0.017 0.056 1.72

Table 6
Results of performed VIF analysis for variables of group 4. The GVIF1/(2$Df) describes
how inflated the confidence intervals in Table 5 are due to multicolinearity.

Variable Opening window Closing window

GVIF Df GVIF1/(2$Df) GVIF Df GVIF1/(2$Df)

Solar radiation 4.0 1 2.0 1.7 1 1.3
Outdoor relative humidity 2.0 1 1.4 2.7 1 1.6
Room 530.0 1 23.0 27.0 1 5.2
Sun hours 1.3 1 1.1 1.5 1 1.2
Indoor temperature 3.1 1 1.8
Lux 1.8 1 1.3
CO2 concentration 3.0 1 1.7
Outdoor temperature 5.5 1 2.3 175.9 1 13.3
Solar radiation: room 8.3 1 2.9
Room: indoor temperature 203.3 1 14.2
Room: CO2 concentration 363.5 1 19.1
Room: outdoor temperature 9.0 1 3.0 6.8 1 2.6
Indoor relative humidity 3.5 1 1.9
Season 98.3 2 3.1
Outdoor temperature:

season
1968.8 2 6.7

Room: indoor relative
humidity

34.2 1 5.8
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